Hydraulics is the study and understanding of

 he behavior of liquids at rest and in motion. We are concerned with water, and the following characteristics of our application:. How much water do we have (Pool Capacity)?
2. How fast do we want to move the water (Turnover Rate)?
. How much resistance will this water meet while moving
through the system (Friction Loss)?
4. How will we overcome this resistance (Pump/Filter Sizing)?

Following are step-by-step instructions to answer these our questions, and, ultimately, determine the proper siz pump or filter for virtually any aftermarket instaliation. Below each step is a calculation based on the following example: 16 ft . by 32 ft . rectangular pool, 3 ft . to 8 ft . deep. Existing 1 H.P. pump; filter gauge reads 10 P.S.I. (clean).

1. Pool Capacity

To determine total gallons, we must first calculate the surface area of the pool in square feet:
A. Surface Area

${ }_{\text {(surface area) }}$
Surface Area: 16 ft. $x 32$ ft. $=512$ ft.
Next, multiply the square footage by average depthto determine the approximate cube of the pool:
B. Average Depth

Average Depth: $(\mathbf{3 f t} \mathbf{+ 8 f t}) \div 2=5.5 \mathrm{ft}$
C. Cube
 ft^{3}

Cube: 512 ft. $^{2} \times 5.5$ ft. $=2,816$ ft. 3
Then, multiply the pool's approximate cube by 7.5 , which represents the number of gallons of water in one cubic foot.
D. Pool Capacity
(cube)
ft. ${ }^{3} \times 7.5$ gallons $/ \mathrm{ft}^{3}=$ \qquad gallons

Pool Capacity: 2,816 t. ${ }^{3} \times 7.5=21,120$ gallons

Some of the more common pool sizes are:

Above-Ground Size	Gallons*
15' Round	5,299
18' Round	7,630
21' 'ound	10,039
24' Round	13,565
12' 24' Rectangle	8,640
27' Round	17,168

In-Ground Size	Gallons*
$12^{\prime} \times 24^{*}$ Rectangle	11,880
$16^{\prime} \times 32^{\prime}$ Rectangle	21,120
$18^{\prime} \times 36^{\prime}$ Rectangle	26,730
$20^{\prime} \times 40^{\prime}$ Rectangle	33,000

Use these as a general guide to determine the pump and filter sizes neces sary to properly turn the pool water over in an 8 -12 hour period.

2. Turnover Rate

Once the pool's capacity has been calculated, the next step is to determine how fast the water must be circulated in Gallons Per Minute (GPM). to meet reasonably clean, safe water standards. The recommended minimum standards for swimming pools are not less than the flow rate to provide one (1) full turnover of the pool every twelve (12) hours. However, an eight $\mid 8$
to ten (10) hour rate is quite common: to ten (10) hour rate is quite common:
A. Turnover Rate in Gallons Per Hour (GPH)

Turnover rate: 21,120 gallons $\div \mathbf{1 0}$ hours $=\mathbf{2 , 1 1 2}$ gallons per hour

B. Turnover Rate in Gallons Per Minute (GPM)

Turnover rate: 2,112 gallons per hour $\div 60=35$ GPM

3. Friction Loss

Everything that the water must pass through within the recirculating system the resistance is called Total Dynamic Head, and is measured in Feet of Head
Often, we are unable to determine the total amount of pipe and fittings in an existing installation ... it's underground. Therefore, what follows is a simplified of determining Total Dynamic Head.

We will need to add the resistance from the vacuum (suction side of the pump, see A on next page, (measured in inches of mercury with a vacuum gauge; one (1) inch of mercury $=1.13$ feet of water); to the resistance on the pressure side
of the pump, see B on next page, (measured in pounds per square inch - as read from the pressure gauge on the filter when clearr, one (1) P.S.I. $=2.31$ feet of head), to determine Total Dynamic Head, see C next page.
Typically, a vacuum reading will not be available; therefore, the table below provides Common Head Loss Factors for today's high-efficiency pumps.

Friction Loss (continued)
A. Friction Loss (Vacuum)
$\frac{\text { (vacuum reading) }}{}$ in. mercury $\times 1.13 \mathrm{ft}$. of water $=\frac{\mathrm{ft} \text { (total resistance - -vacuum) }}{}$ water or COMMON HEAD LOSS FACTORS
Vacuum (At Pump) - Assumes 2 " suction line, not to exceed 40° long, minimal fit ings, one (1) 2" valve and full-rated pumps.
$3 / 4$..P.Pump -4.5 to 5.5 ft of water $\quad 11 / 2 \mathrm{H} . \mathrm{P}$ Pump -10 to $12.5 \mathrm{ft}$. of water H.P.P Pump - 7 to $9 \mathrm{ft}$. of water \quad 2.P.P.Pump -13.5 to $16 \mathrm{ft}$. of water B. Friction Loss (Pressure)
 Total Resistance (Pressure): 10 P.S.I. $\times 2.31=23 \mathrm{ft}$. of head
C. Total Dynamic Head
\qquad ft. of head $=$

 Total Resistance to flow: 9 fl . \mathbf{W}. NOTE: the table below provides a maximum flow (GPM) through 1 1/"and 2" PVC pipe
without exceeding the maximum standards for velocity (ft/sece.) i.e.e. suction line (8 without exceeding the maximum stan
tt./sec.) and return line $(10 \mathrm{ft} / \mathrm{sec}$.)

Pipe Size (PVC)	Suction Line	Return Line
$1 \frac{1}{2 / 2}$	50 GPM	65 GPM
2^{2}	85 GPM	105 GPM
$2^{1 / 2^{\prime \prime}}$	125 GPM	150 GPM

Re-Cap

Ve now have all of the information necessary to select the proper size pump and/or ter. To re-cap, enter the final calculations from the previous three sections in the seces below, which will serve as our road map to sizing
\qquad yallons
Turnover Rate \qquad gallons per minute (GPM)
Friction Loss \qquad ft. of head
Friction loss : 32 ft. of head

4A. Pump Sizing

Since the one and only function of the pump is to overcome the total resistance Hance data is provided in GPM (output) vs. Feet of Head (resistance). See the tab below, for example. The specific performance data for Hayward pumps can be found in the Pump Section, pages 5 to 11

Performance Data - Pump

Model No. Max Rated	Model No Full Rated	Pump Output (GPM) vs. Total Resistance To Flow (Feet of Head)					
		20 ft	30 ft .	40 ft.	50 ft .	60tt.	7ft.
2600x	-	55	45	29	-	-	
SP2605X7	-	67	58	47	31	-	-
SP2607X10	SP2607	85	76	65	50	27	-
SP2610X15	SP2610	97	90	80	67	50	10
SP2615X20	SP2615	116	111	99	85	70	51
SP2621X25	SP2621	109	109	104	95	84	69

Select SP2605X7

STEE: Always move up to next level of resistance (i.e., 32 to 40 ft. of head), an

Saving Money by Saving Energy
Depending upon utility rates, pool characteristics, and equipment selected, it is possible to recoup the premium cost of an upgrade from a standard pump to an eroy efficient pump in the first year of operation.
For example, a system featuring an energy efficient high performance pump
drawing 5.34 amps, at 230 volts, where the local utility rate is $\$ 12$ per drawing 5.34 amps, at 230 volts, where the local utility rate is $\$.12$ per KWh will
cost $y 0 u \$ 178$ over a 12 hour period per day A standard pump drawing 70 amp will cost you $\$ 2.32$ per day or an extra $\$ 197$ annually!
Use this worksheet to help determine your energy savings.

A. Motor Amp Rating	A
B. Voltage (115v or 230v)	B
C. Local Energy Rate \$ per KWh*	c
D. Watts $=A \times B$	D
E. Kilowatts $=\mathrm{D} / 1000$	E
F. $\$$ per $\mathrm{KWh}=\mathrm{ExC}$	F
G. Hours of Operation	6
H. Cost per Day $=$ Fx G	H
J. Monthly Cost = $\mathrm{H} \times 30$	J
K. Yearly Cost $=\mathrm{H} \times 365$	K

Energy
ifficient
*Refer to your utility bill to determine local ral
See your pool professional for assistance

4B. Filter Sizing

A filter, be it D.E., sand or cartridge, has a Design Flow Rate (in Gallons Per Minute - GPM), as well as a Turnover Rate (Pool Capacity in Gallons). See the
tante below, for example. The specific performance data for Hayward filters is table below, for example. The specific perf
provided in the filter section, pages 14 to
Performance Data - Sand Filter

Model Number	Effective Filtration Area	$\begin{gathered} \text { Design } \\ \text { Flow Rate } \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Turnover } \\ \text { (In Gallons) } \end{array} \\ \hline \end{gathered}$	
			8 Hours	10 Hours
S180T	$1.75 \mathrm{ft}.{ }^{2}$	35 GPM	16,800	21,000
S210T	$2.20 \mathrm{ft.}^{2}$	44 GPM	21,120	26,400
S220T	$2.64 \mathrm{ft.}^{2}$	52 GPM	24,960	31,200
S244T	$3.14 \mathrm{ft}^{2}$	62 GPM	29,760	37,200
S270T	$3.7 \mathrm{ft}^{2}$	74 GPM	35,520	44,400
S310T	$4.91 \mathrm{ft.}^{2}$	98 GPM	47,040	58,800
S360SX	$6.5 \mathrm{ft}^{2}$	130.6 GPM	62,400	78,000

Select S2107 (minimum) to adequately filter pool (i.e., 44 vs. 35 GPM turnover rate; will handle pools up to 21,120 gallons in 8 hours).

One additional factor to consider in filter sizing is bather load. Busier pools require larger filters. Also, larger filters provide longer cycles, reducing the everyday maintenance required by the consumer during the pool season.

Summary

Using the information in the re-cap section above, based upon your calculations, choose the desired pump and/or filter model, then select the propers size component to meet the needs of the installation.
It is important to remember that your Turnover Rate calculation is keyed directly to a specific Total Dynamic Head calculation (i.e., GPM vs. Feet of Head). If you increase of decrease your
respectively.

